Clustering feature vectors with mixed numerical and categorical attributes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clustering Based on Compressed Data for Categorical and Mixed Attributes

Clustering in data mining is a discovery process that groups a set of data so as to maximize the intra-cluster similarity and to minimize the intercluster similarity. Clustering becomes more challenging when data are categorical and the amount of available memory is less than the size of the data set. In this paper, we introduce CBC (Clustering Based on Compressed Data), an extension of the Bir...

متن کامل

Bi-level clustering of mixed categorical and numerical biomedical data

Biomedical data sets often have mixed categorical and numerical types, where the former represent semantic information on the objects and the latter represent experimental results. We present the BILCOM algorithm for 'Bi-Level Clustering of Mixed categorical and numerical data types'. BILCOM performs a pseudo-Bayesian process, where the prior is categorical clustering. BILCOM partitions biomedi...

متن کامل

Using Categorical Attributes for Clustering

The traditional clustering algorithms focused on clustering numeric data by exploiting the inherent geometric properties of the dataset for calculating distance functions between the points to be clustered. The distance based approach did not fit into clustering real life data containing categorical values. The focus of research then shifted to clustering such data and various categorical clust...

متن کامل

Clustering Numerical and Categorical Data

Clustering is an important technique for data mining which allows us to discover unknown relationships in our data sets. Clustering algorithms that use metrics based on the natural ordering of numbers cannot be applied to categorical (non-numerical) data. In this tutorial we will review the main methods for numerical data clustering (K-Means, Hierarchical Clustering and Fuzzy CMeans) and then s...

متن کامل

Clustering Algorithm for Incomplete Data Sets with Mixed Numeric and Categorical Attributes

The traditional k-prototypes algorithm is well versed in clustering data with mixed numeric and categorical attributes, while it is limited to complete data. In order to handle incomplete data set with missing values, an improved k-prototypes algorithm is proposed in this paper, which employs a new dissimilarity measure for incomplete data set with mixed numeric and categorical attributes and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computational Intelligence Systems

سال: 2008

ISSN: 1875-6891,1875-6883

DOI: 10.1080/18756891.2008.9727625